

Intelligent unmanned cluster system development and practice Fullstack development case based on RflySim toolchain

Lecture 10 Cluster control algorithm development

outline

- 1. Experimental platform configuration
- 2. Introduction to key interfaces
- 3. Basic experimental cases

(free version)

- 4. Advanced interface experiment (personal version)
- 5. Advanced case experiments

(collection version)

- 6. Extended case
 - (full version)
- 7. Summary

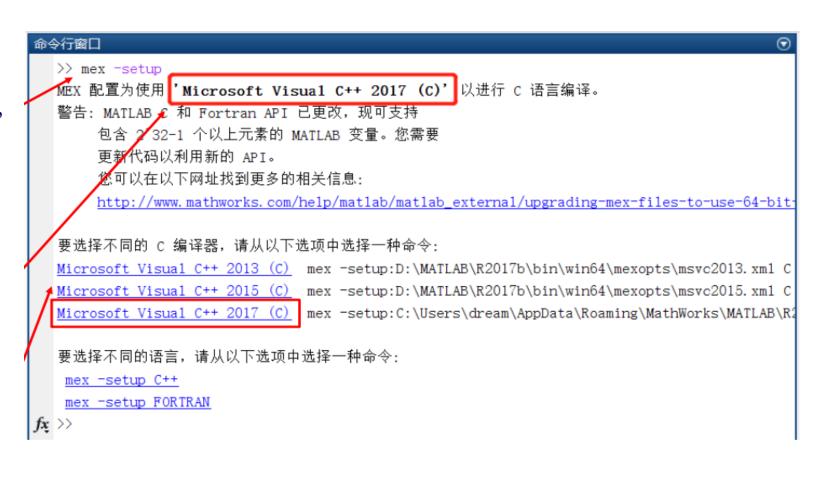
- 1.1 Components that need to be installed
- • Visual Studio 2017 (both trial and full versions need to be installed)
- Configure the C++ compiler for MATLAB (both trial and full versions need to be installed)
- • Matlab 2023a* (advanced full version installation)

The following describes the installation method of Visual Studio 2017 (requires Internet connection): In this platform, the installation package of Visual Studio 2017 has been placed

- 1.2 Installation method of Visual Studio 2017
- First, we can open the platform installation location and find the location *:\PX4PSP\RflySimAPIs. Here are some routines in the platform and software installation packages.
- After that, we can open the content of Chapter 4 and find the basic version of the routine, 4.RflySimModel .BasicExps, where we can find the folder named VS2017Installer, which is the installation package of Visual Studio 2017.

1.2 Installation method of Visual Studio 2017

- Install Visual Studio 2017 (you can also use other versions, as long as MATLAB can recognize it).
- The Visual Studio compiler will be used in many areas of subsequent courses, such as the use of MATLAB S-Function Builder module, Simulink automatically generating C/C++ model code, etc.
- For this course content, you only need to check "Desktop Development in C++" in the picture on the right.



- 1.2 Installation method of Visual Studio 2017
- Note: Higher versions of MATLAB can also install VS2019, but MATLAB can only recognize Visual Studio versions lower than its own, so MATLAB 2017b cannot recognize VS 2019.
- Note: Please do not change the default installation directory of VS (for example, install to drive D), otherwise MATLAB will not be recognized.
- Cannot use Mingw compiler, requires VS

- 1.3 Configure the C++ compiler for MATLAB
- Enter the command "mex setup" in the MATLAB command line window
- Generally speaking, the VS 2017 compiler will be automatically recognized and installed. As shown in the picture on the right, "MEX is configured to use 'Microsoft Visual C++ 2017' for compilation'', indicating that the installation is correct.
- If there are other compilers, you can also switch to other compilers such as VS 2013/2015 on this page

- 1.4 Installation method of Matlab 2023a
- MATLAB installation package download path:
- <u>https://ww2.mathworks.c</u> <u>n/products/matlab.html</u>

MathWorks®	产品	解决方案	学术	支持	社区	活动
MATLAB						
总览 快速入门 特性与功能	▼ 支	持包▼ 学	生使用			
数学・图形・ MATLAB 是数百万工程 算平台,支持数据分析、	币和科	学家都在伯		编程和	唆值	Cillert Brock were station Let's aug pre acc fig cor tit
获取 MATLAB						ini ing tru

outline

- 1. Experimental platform configuration
- 2. Introduction to key interfaces
- 3. Basic experimental cases

(free version)

- 4. Advanced interface experiment (personal version)
- 5. Advanced case experiments

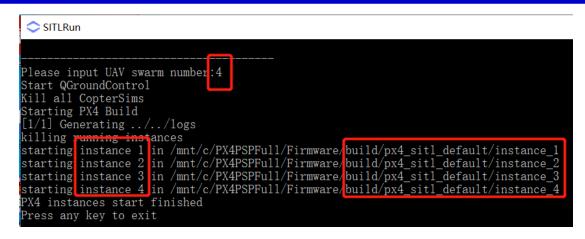
(collection version)

- 6. Extended case
 - (full version)
- 7. Summary

• 2.0 Overview of Basic Experiments

Including basic functio n interface ''RflySimA PIs/10.RflySimSwarm

For details, see <u>API en.</u> <u>pdf</u> and <u>Readme_en.pd</u>

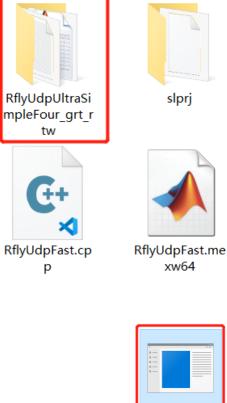

1.SwarmLo	gGet	2023/12/13 15:04	文件夹
2.MatRflyS	warmAPIPack	2023/12/13 15:04	文件夹
3.EXEFileG	ener	2023/12/21 11:19	文件夹
4.RebootPi	xViaUDP	2023/12/13 15:04	文件夹
5.GetTerra	inAPI	2023/12/13 15:04	文件夹
6.DataAnal	ysis_Mat	2023/12/13 15:04	文件夹
📊 7.DataAnal	ysis_Py	2023/12/13 15:04	文件夹
8.MAVLink	Full4Swarm	2023/12/13 15:04	文件夹

e1_RflyUdpSwarmExp	2023/12/13 15:04	文件夹
e2_NoPX4SITL4Swarm	2023/12/13 15:04	文件夹
e3_LightShowSwarm	2023/12/13 15:04	文件夹
e4_FixWingGMSwarm	2023/12/13 15:04	文件夹

- 2.1 SIL simulation log acquisition experiment
- When performing SIL simulation, RflySim will automatically record the Log log of each aircraft and generate a .ulg format file.
- For detailed operations and experimental results, see
 0.ApiExps\1.SwarmLogGet\ Readme_En.pdf

脑 〉 Windows (C:) 〉 PX4PSP 〉 Firmware 〉 build 〉 px4_sitl_default										
名称 ^	修改日期	类型	大小							
📒 bin	2023/8/23 10:18	文件夹								
boards	2023/8/23 10:18	文件夹								
늘 build_flightgear_bridge	2023/8/23 10:18	文件夹								
늘 build_gazebo	2023/8/23 10:18	文件夹								
늘 build_jsbsim_bridge	2023/8/23 10:18	文件夹								
CMakeFiles	2023/8/23 10:18	文件夹								
atc 🔁	2023/8/23 10:18	文件夹								
🚞 external	2023/8/23 10:18	文件夹								
generated_params	2023/8/23 10:18	文件夹								
instance_1	2023/8/24 9:38	文件夹								
instance_2	2023/8/24 9:38	文件夹								
instance_3	2023/8/24 9:38	文件夹								
instance_4	2023/8/24 9:38	文件夹								
avsdk_tests	2023/8/23 10:18	文件夹								

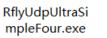
- 2.2 MATLAB cluster interface model packaging experiment
- The MATLAB cluster interface module of the RflySim platform adopts a mixed form of C++/S-functions. This experiment will explain how to encapsulate the completed C++ file into a Simulink module.
- For detailed operations and experimental results, see
 <u>0.ApiExps\2.MatRflySwarmAPIPack\Re</u> adme_En.pdf

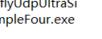

<	RflyUdpFast	
	RflyUdpFastPack	

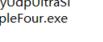
The first par	ceives bytes from an UDP/IP connection. ameter is the UDP port on the first Copte	erSi
	rameter is the total vehicle number ameter is the data mode. check the help e definition	l
Parameters		
UDP IP Addres	55	
127. 0. 0. 1		
UDP Port		
20100		
vehicle Numbe	er	
1		
UDP Mode		
FullData Mod	e	
Sample Time		
0.02		

- 2.3 .exe file generation experiment
- After the Simulink controller is ٠ compiled and generated into an exe, the algorithm can be run without MATLAB, and it is a binary executable file itself, which has very high operating efficiency. Even largescale control algorithms can ensure real-time control.
- For detailed operations and ۲ experimental results, see **0.ApiExps\3.EXEFileGener\Readme En.pdf**


Exe.p




RflyUdpUltraSi mpleFour.slx



- 2.4 Flight control hardware remote restart experiment
- This experiment uses broadcast mode to restart all HITL simulations in the LAN.
- For detailed operations and experimental results, see

 0.ApiExps\4.RebootPixVia
 UDP\Readme_En.pdf

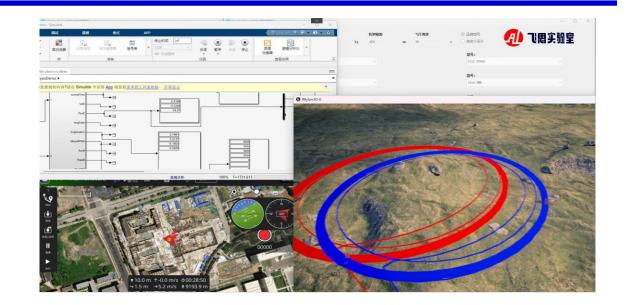
CopterSim	v2.54-2023	0801											- 0	>
<u> </u>	• ·	机架类型	整机质量		机架轴	1 5		海拔) 品牌型号				
<u> </u>		四旋翼 ~	1.5	kg	450	~-) 自定义设i	+ 4	li li li	周实验室	
00		四加6篇 ~	1.0	- Kg	400		30		m C				ي چر د جر او	•
		电机品牌:								型号:				
		DJI(大疆)			~					2312 KV9	60		~	
_														
		螺旋桨品牌:								型号:				
		APC			~					10x4.5MR			~	
		电调品牌:								型号:				
3	3	电响nall#: Hobbywing(好盈)			~					坐与: XRotor 2	A		~	
		HODDAMIUS(X1W)			×					AKOTOF 2	UA		÷	
	_	电池品牌:								型号:				
		ACE(格氏电池)			~					LiPo 3S-	11.18-250-550	OnAh	~	
机型数	te de l			~		计算		模型	44 %h		ho 〉 持刑 庄		開始などの方面用	
机望频	(坊)年:			~		日昇		快空	2.81		加入模型库		删除当前机型	
+ 40	an a dhàile 🗖		μ.		<u>لہ جات</u>			- 44 - 17 -		W2 10		. 000	10.62	
	UDP收端口:	使用DLL模型文化	÷:		仿真模式:			三维显示场景	:	联初			偏航:	•
2	20102	_			PX4_HITL		~	Grasslands		~	x: 0	y: 2	yaw: 0	
					U	DP Mode								
飞控选挂	择 :	USB 串行设备 COI	19	\sim	U	DP_Full	\sim	Pixhavk	重启中.		停止仿真		重新仿真	
AI. LINCL 1														
opterSim: : opterSim: :		Received from por	t 20102				X O			¥ 2		Ζ7.	8	
opterSin:	Send reboo	t command to Pixha	vk.											
	d ARM/DISA	RM ACCEPTED					∀ x 0			∛у О		Vz ()	
X4: Comman X4: BARO #0	d REBOOT/S	HUTDOWN ACCEPTED					Φ 0			θο		ψ		
AT. DAILO #	o faifed.	TIMEOUT					+ 0							
本机ID:	UDP收端口	使用DLL模型文	4:		仿真模式:			三维显示场景	t:	联机	1 飞机起点的	2置:	偏航:	
1	20100			~	PX4_HITL		~	Grasslands		~ [) x: 0	y: 0	yaw: 0	•
					U	DP Mode				_				
飞控选持	择 :	USB 串行设备 CO	H6	~		DP_Full	~	Pixhavki	重启中		停止仿真		重新仿真	
opterSim:	reboot MSG	Received from por					W A					7.0		
opterSim:		. Stop! t command to Pixha	wk.				X 0			Υ 0		Z 8	.04	
opter51m:		ACCEPTED					∀ x 0			Vy 0		$\mathbb{V}_{\mathbb{Z}}$	0	
X4: Comman	d ARM/DICA													
2X4: Comman 2X4: Comman	nd ARM/DISA nd REBOOT/S	HUTDOWN ACCEPTED					Φο			θο		ψ		

- 2.5 Multi-machine terrain height acquisition interface experiment
- The RflySim platform provides a height information acquisition interface, which allows you to automatically configure the initial position of the aircraft given the number and spacing of aircraft, and calculate the terrain height based on the current terrain, just like the bat startup script.
- For detailed operations and experimental results, see

 0.ApiExps\5.GetTerrainAPI\Readme_En.p df

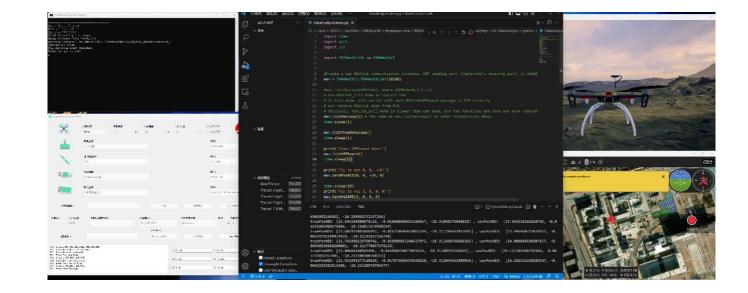
```
>> GenSwarmPos12
Init pos and yaw lists for ***Pos.bat is :
PosXStr=0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4
PosYStr=0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6
YawStr=0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
```

```
Alt list is
Alt=-8.0485, -7.7987, -7.4631, -7.1196, -8.2515, -7.
```


```
Init Pos and Yaw list for Python is:
InitPosList=[
    [-8.0485,0,0,0],
    [-7.7987,0,2,0],
    [-7.4631,0,4,0],
    [-7.1196,0,6,0],
    [-7.1196,0,6,0],
    [-7.515,2,0,0],
    [-7.5333,2,4,0],
    [-7.5333,2,4,0],
    [-7.3226,2,6,0],
    [-8.3685,4,0,0],
    [-8.1188,4,2,0],
    [-7.7831,4,4,0],
    [-7.3772,4,6,0],
```

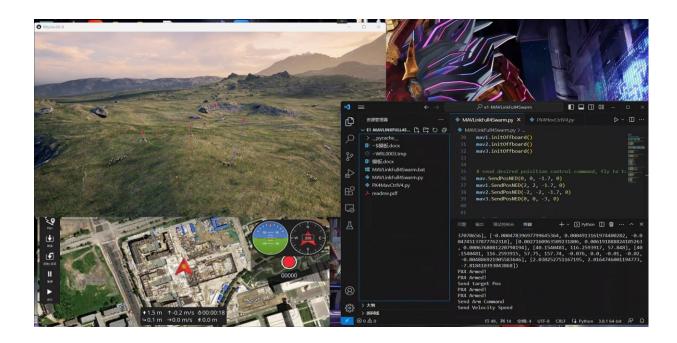

- 2.6 Data analysis experiment based on Simulink
- The RflySim platform has rich flight log acquisition and analysis functions. This experiment will be based on Simulink to achieve real-time acquisition and storage analysis of flight logs.
- For detailed operations and experimental results, see

 0.ApiExps\6.DataAnalysis M at\Readme_En.pdf


<u>subplot(</u>2,1,1); <u>plot(</u>PosE1.Data(:,1),PosE1.Data(:,2)) <u>subplot(</u>2,1,2); plot(PosE2.Data(:,1),PosE2.Data(:,2))

- 2.7 Data analysis based on Python
- The experimental RflySim platform has rich flight log acquisition and analysis functions. This experiment will implement real-time acquisition and storage analysis of flight logs based on Python.
- For detailed operations and experimental results, see

 0.ApiExps\7.DataAnalysis_P
 y\Readme_En.pdf



- 2.8 Cluster interface experiment
- UAV position control, speed control, and heading control are carried out by using the RflySim platform mavlink communication function interface.
- For detailed operations and experimental results, see

 0.ApiExps\8.MAVLinkFull4S
 warm\Readme_En.pdf

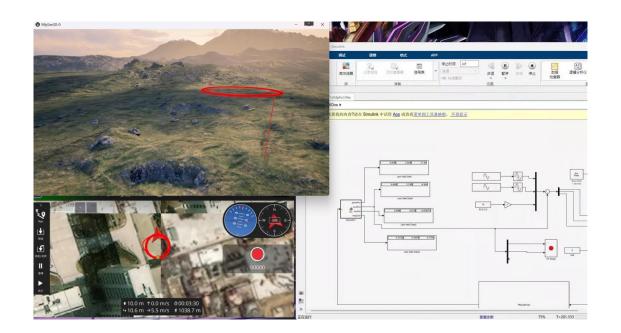
outline

- 1. Experimental platform configuration
- 2. Introduction to key interfaces
- 3. Basic experimental cases

(free version)

- 4. Advanced interface experiment (personal version)
- 5. Advanced case experiments

(collection version)

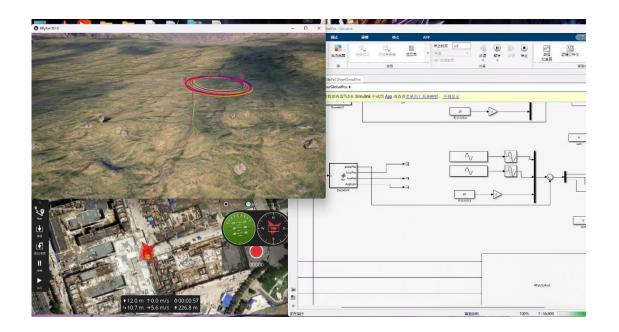

- 6. Extended case
 - (full version)
- 7. Summary

- 3.1.1 FullData mode stand-alone experiment of communication interface
- Through the RflyUdpFast transmission module provided by the platform, the status information of the drone is received, and then simulink modeling is performed to control the local position motion of a single drone, and the control instructions are sent to the module, and then simulated.
- For detailed operations and experimental results, see

<u>1.BasicExps\e1_RflyUdpSwarmExp\1.R</u> <u>flyUdpFullOne_Mat\Readme_En.pdf</u>

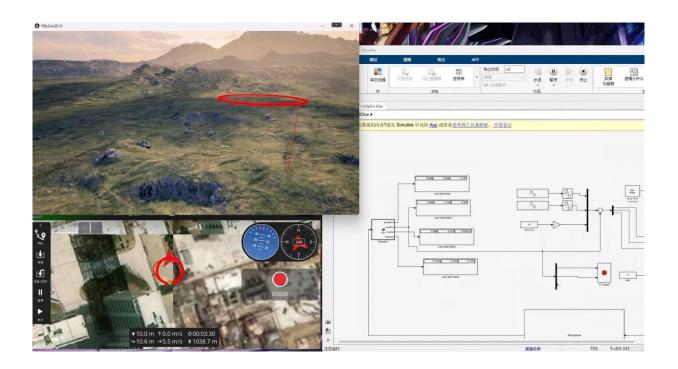
- 3.1.2 FullData mode 4-machine simulation experiment of communication interface
- Through the RflyUdpFast transmission module provided by the platform, the status information of the drones is received, and then simulink modeling is performed to control the local position motion of the four drones, and the control instructions are sent to the module, and then simulated.
- For detailed operations and experimental results, see

1.BasicExps\e1_RflyUdpSwarmExp\2.Rf lyUdpFullFour_Mat\Readme_En.pdf



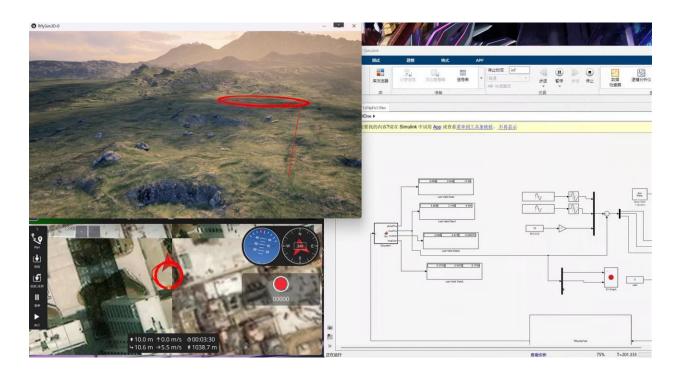
- 3.1.3 Communication interface FullData mode global coordinate control 4-machine experiment
- Through the RflyUdpFast transmission module provided by the platform, the status information of the drone is received, and then Simulink modeling is performed to control the global position motion of the drone, and the control instructions are sent to the module, and then the simulation is performed.
- For detailed operations and experimental results, see

1.BasicExps\e1_RflyUdpSwarmExp\3.Rfly UdpFullFourGPos_Mat\Readme_En.pdf



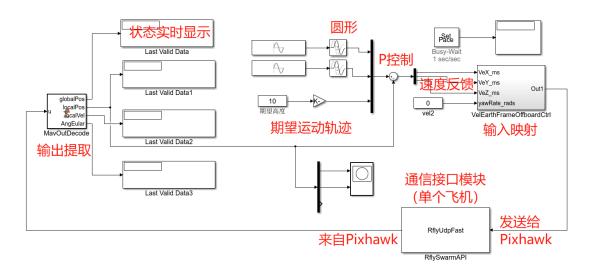
- 3.1.4 Single-machine circle drawing experiment in SimpleData mode of communication interface
- Through the RflyUdpFast transmission module provided by the platform, the status information of the drone is received, and then simulink modeling is performed to control the local position motion of a single drone, and the control instructions are sent to the module, and then simulated.
- For detailed operations and experimental results, see

1.BasicExps\e1 RflyUdpSwarmExp\4.R flyUdpSimpleOne Mat\Readme En.pdf



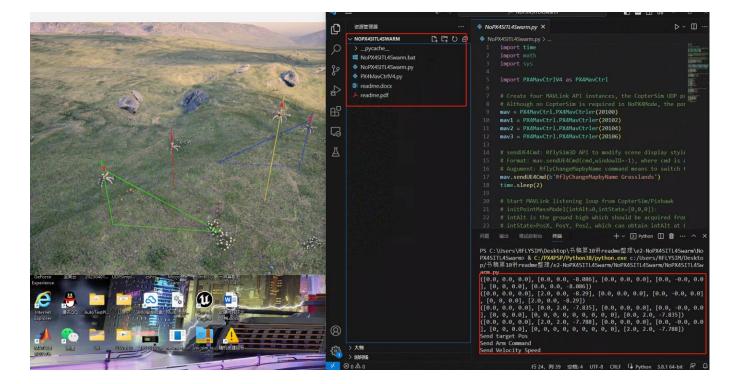
- 3.1.5 Single-machine circle drawing experiment in UltraSimple mode of communication interface
- Through the RflyUdpFast transmission module provided by the platform, the status information of the drone is received, and then simulink modeling is performed to control the local position motion of a single drone, and the control instructions are sent to the module, and then simulated.
- For detailed operations and experimental results, see

<u>1.BasicExps\e1_RflyUdpSwarmExp\5.</u> <u>RflyUdpUltraSimpleOne_Mat\Readme</u> <u>En.pdf</u>

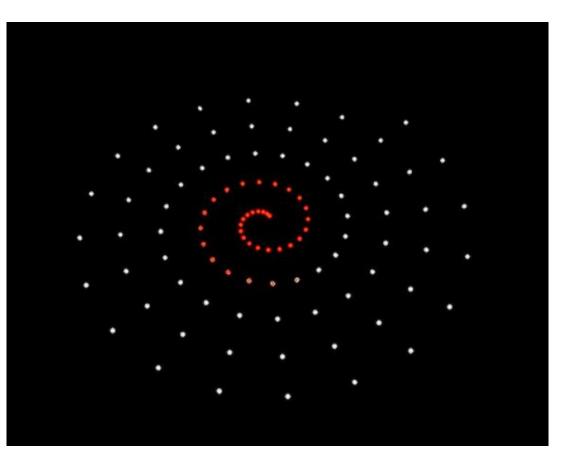


- 3.1.6 Four-machine circle drawing experiment in UltraSimple mode of communication interface
- Through the RflyUdpFast transmission module provided by the platform, the status information of the drone is received, and then Simulink modeling is performed to control the local position motion of a single drone, and the control instructions are sent to the module, and then simulated.
- For detailed operations and experimental results, see

1.BasicExps\e1_RflyUdpSwarmExp\6.Rfl yUdpUltraSimpleFour_Mat\Readme_En. pdf



- 3.2 4-organic point cluster experiment
- This platform has developed a particle multi-rotor model under Python. Only two softwares, Python and RflySim3D, can realize hundreds of pilot-level UAV cluster simulations on a single computer.
- For detailed operations and experimental results, see
 <u>1.BasicExps\e2_NoPX4SITL4Sw</u> arm\Readme_En.pdf



- 3.3 Cluster track lighting display experiment
- The lighting change special effects of this routine actually use the same interface (different lighting styles) as the C key in RflySim3D to switch the aircraft style. Through this interface, the simulation of crash animation after impact and other special effects can be realized.
- For detailed operations and experimental results, see
 <u>1.BasicExps\e3 LightShowSwarm\Read</u>
 <u>me En.pdf</u>

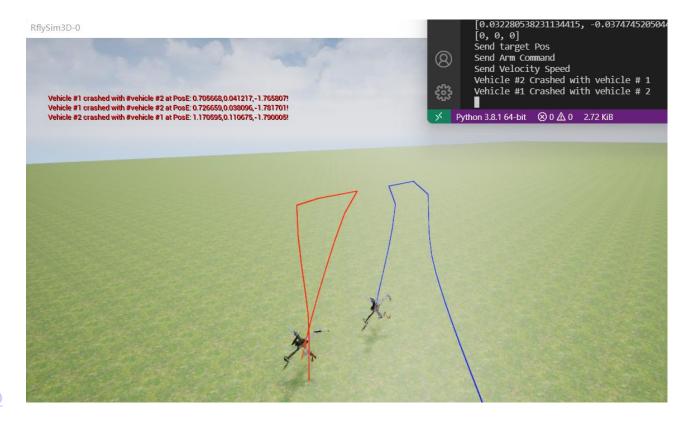
- 3.4 Fixed wing particle model cluster experiment
- In this experiment, a fixed-wing particle model was built, which can control the fixed-wing to fly on a predetermined trajectory through speed, yaw, height or position commands.

• For detailed operations and experimental results, see

<u>1.BasicExps\e4 FixWingGMSwarm\R</u> <u>eadme En.pdf</u>

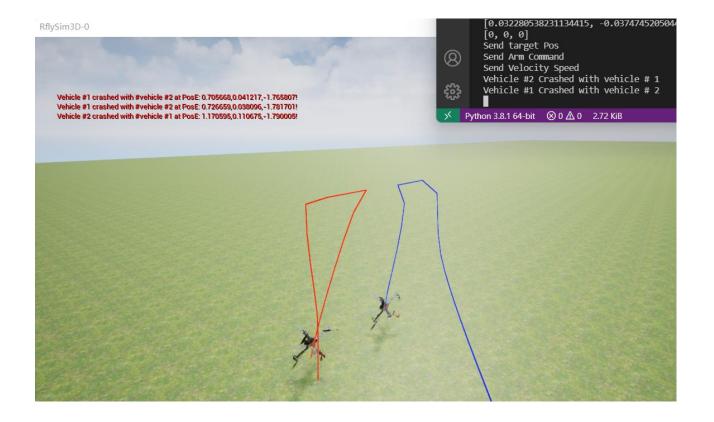
- 3.5.1 RflySim3D collision interface experiment
- This experiment demonstrates how to achieve the collision effect of drones in the three-dimensional engine by calling the collision API interface of the RflySim platform.
- For detailed operations and experimental results, see

 <u>1.BasicExps\e5</u> CollisionExpA <u>PI\1.CrashMonitorAPI\Read</u> <u>me_En.pdf</u>



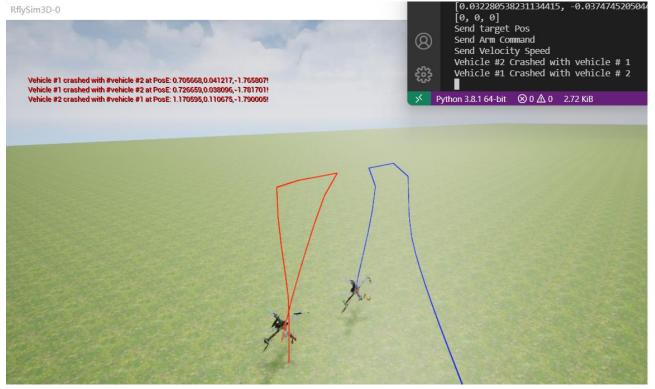
- 3.5.2 MAVLink mode 2 machine collision experiment
- The three-dimensional scene simulation software RflySim3D of the RflySim platform is developed based on UE. During the development process, it has a collision engine mode. This example shows the detailed process of two aircraft from takeoff to collision.
- For detailed operations and experimental results, see

1.BasicExps\e5_CollisionExpAPI\2. CollMAVLinkAPI_Py\Readme_En.p df



- 3.5.3 UDP mode 2 machine collision experiment
- The three-dimensional scene simulation software RflySim3D of the RflySim platform is developed based on UE. During the development process, it has a collision engine mode. This example shows the detailed process of two aircraft from takeoff to collision.
- For detailed operations and experimental results, see

1.BasicExps\e5_CollisionExpAPI\ 3.CollUDPModeAPI_Py\Readme En.pdf



- 3.5.4 UDP mode 2 machine collision (Simulink) experiment
- The three-dimensional scene simulation software RflySim3D of the RflySim platform is developed based on UE. During the development process, it has a collision engine mode. This example shows the detailed process of two aircraft from takeoff to collision.
- For detailed operations and experimental results, see

<u>1.BasicExps\e5_CollisionExpAPI\4.C</u> <u>ollUDPModeAPI_Mat\Readme_En.p</u> <u>df</u>

outline

- 1. Experimental platform configuration
- 2. Introduction to key interfaces
- 3. Basic experimental cases

(free version)

- 4. Advanced interface experiment (personal version)
- 5. Advanced case experiments

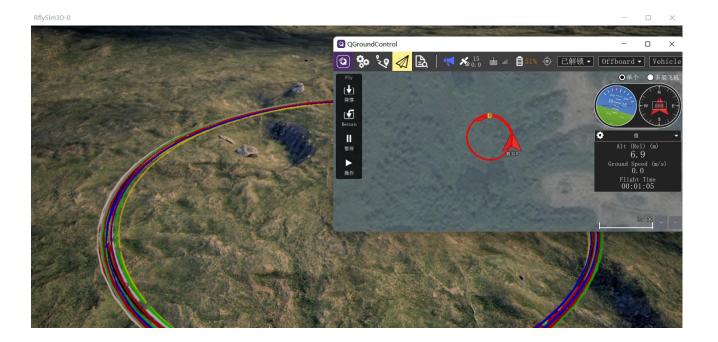
(collection version)

- 6. Extended case
 - (full version)
- 7. Summary

4. Advanced interface experiment

- 4.1.1 Eight-machine circle drawing experiment in UltraSimple mode of communication interface
- Through the RflyUdpFast transmission module provided by the platform, the status information of the drone is received, and then Simulink modeling is performed to control the local position motion of a single drone, and the control instructions are sent to the module, and then simulated.
- For detailed operations and experimental results, see

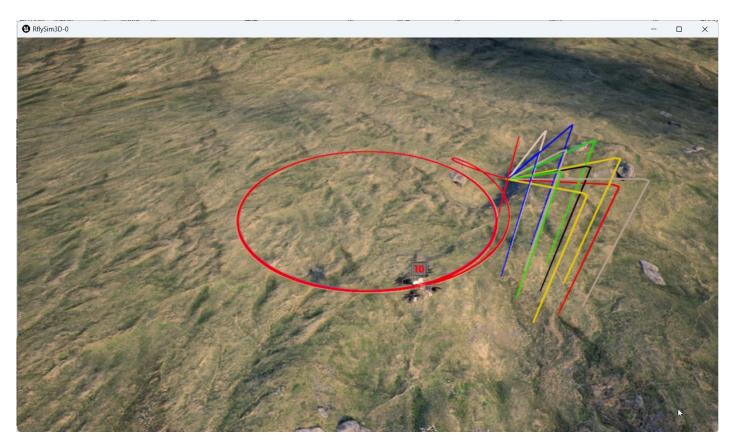
2.AdvExps\e1_RflyUdpSwarmAdvE xp\Readme_en.pdf



4. Advanced interface experiment

- 4.1.2 8-machine SITL simulation experiment
- By using the UDP communication function interface of the RflySim platform, the drone aircraft takes off and then flies in concentric circles.
- For detailed operations and experimental results, see <u>2.AdvExps\e1_RflyUdpSwarm</u>

AdvExp\2.UDPSimple8Swarm Py\Readme_En.pdf



4. Advanced interface experiment

- 4.2 12-machine point cluster experiment
- This experiment is based on the RflySim platform to realize the takeoff and circular flight of 12 particle model quad-rotor aircraft.
- For detailed operations and experimental results, see
 2.AdvExps\e2_NoPX4SITL
 12Swarm\Readme_En.pdf

4. Advanced interface experiment

- 4.3.1 Distributed LAN broadcast communication 8machine simulation experiment
- This experiment enables two computers (hereinafter collectively referred to as computer A and computer B) in a local area network to jointly fly eight aircraft in a circle.
- For detailed operations and experimental results, see

2.AdvExps\e3 DistributedLANSwarm \1.BroadNetSwarm Mat\Readme En. pdf

4. Advanced interface experiment

- 4.3.2 Distributed LAN point-to-point communication 8-machine simulation experiment
- This experiment enables two computers (hereinafter collectively referred to as computer A and computer B) in a local area network to jointly fly eight aircraft in a circle.
- For detailed operations and experimental results, see
 2.AdvExps\e3 DistributedLANSw arm\2.UseIPNetSwarm Mat\Read me En.pdf

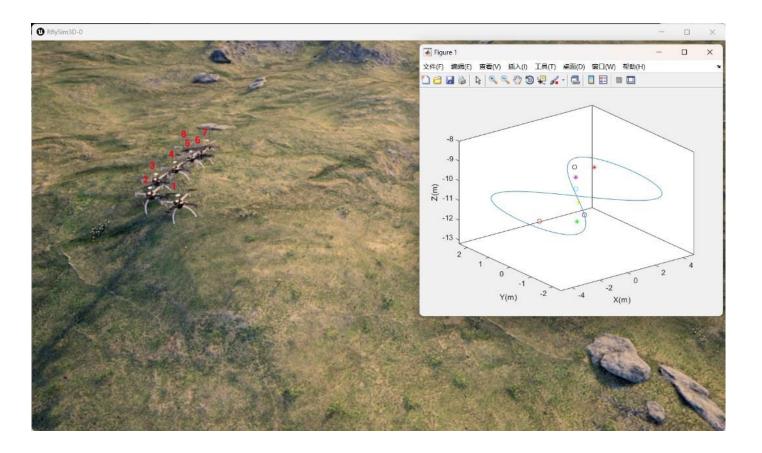
outline

- 1. Experimental platform configuration
- 2. Introduction to key interfaces
- 3. Basic experimental cases

(free version)

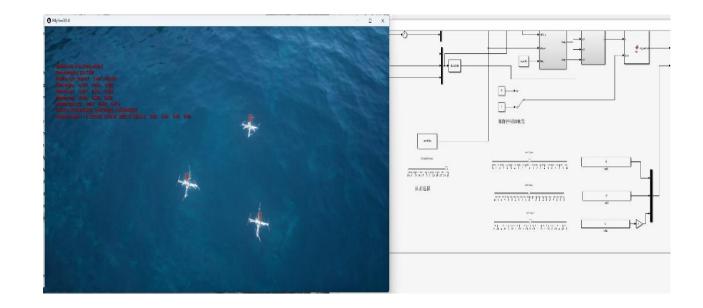
- 4. Advanced interface experiment (personal version)
- 5. Advanced case experiments

(collection version)


- 6. Extended case
 - (full version)
- 7. Summary

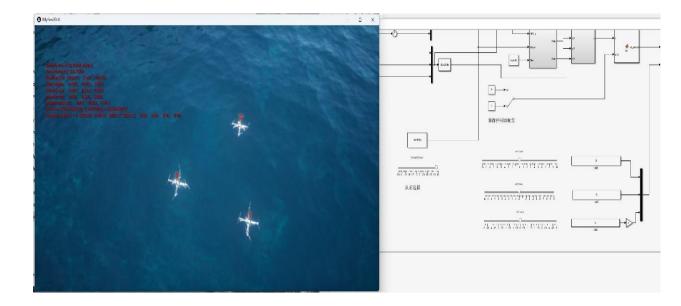
- 5.1.1 Simulation experiment of 8 aircraft flying in a figure-8 formation
- Through the RflyUdpFast transmission module provided by the platform, based on MATLAB/Simulink, the flight control experiment of controlling eight quad-rotor drones in a figure-eight formation was realized.
- For detailed operations and experimental results, see

2.AdvExps\e4_SwarmFormCollCt rl\1.UAV8Swarm3D_Mat\Readme _____en.pdf



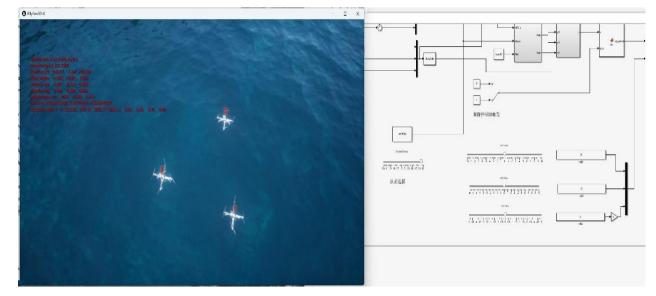
- 5.1.2 Controlling the speed of the aircraft under automatic anti-collision to conduct cluster formation simulation experiments
- In this experiment, software and hardware-in-the-loop simulation were used to demonstrate the transformation and formation functions of different UAV formations.
- For detailed operations and experimental results, see

2.AdvExps\e4_SwarmFormCollCt rl\2.SwarmBodyVelCtrlColl_Mat\ Readme_en.pdf



- 5.1.3 Controlling the earth's speed (NED coordinate system) under automatic anti-collision to conduct cluster formation simulation experiments
- In this experiment, software and hardware-in-the-loop simulation were used to demonstrate the transformation and formation functions of different UAV formations.
- For detailed operations and experimental results, see

2.AdvExps\e4_SwarmFormCollCtrl\ 3.SwarmEarthVelCtrlColl_Mat\Read me_en.pdf



- 5.1.4 Cluster formation simulation experiment (UDP mode) controlling earth speed (NED coordinate system) under automatic anti-collision
- In this experiment, software and hardware-in-the-loop simulation were used to demonstrate the transformation and formation functions of different UAV formations.
- For detailed operations and experimental results, see

2.AdvExps\e4_SwarmFormCollCtrl\4 .SwarmEarthVelCtrlCollUdp_Mat\Re adme_en.pdf

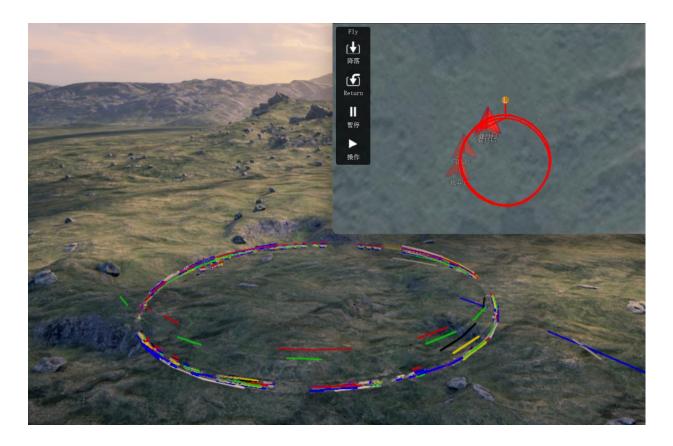
outline

- 1. Experimental platform configuration
- 2. Introduction to key interfaces
- 3. Basic experimental cases

(free version)

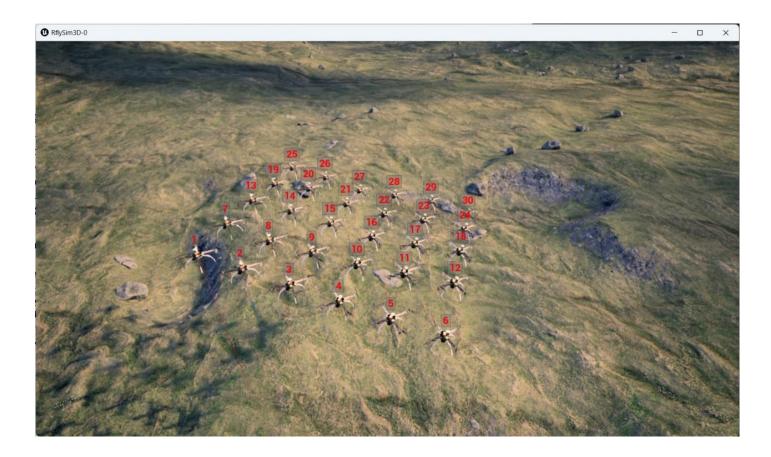
- 4. Advanced interface experiment (personal version)
- 5. Advanced case experiments

(collection version)


- 6. Extended case
 - (full version)
- 7. Summary

- 6.1 Distributed LAN point-topoint communication 16machine simulation experiment
- This experiment enables two designated computers in the local area network (hereinafter collectively referred to as computer A and computer B) to jointly fly eight aircraft in a circle.
- For detailed operations and experimental results, see <u>3.CustExps\e1_UDPSimple16Swar</u>

m2PC Py\Readme En.pdf



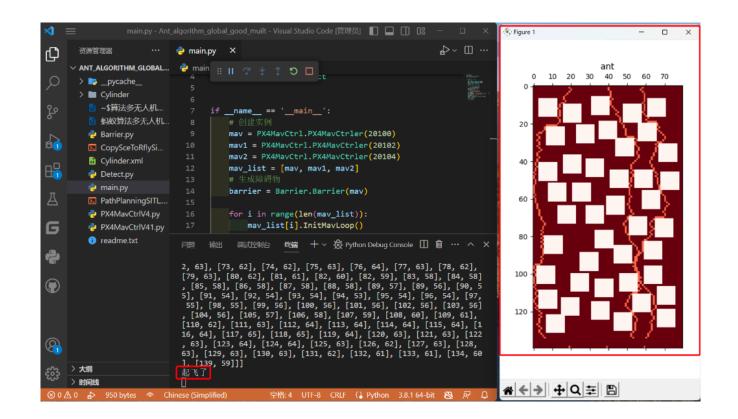
- 6.2.1 30-machine point cluster experiment
- This experiment is based on the RflySim platform to realize the take-off and circular flight of 30 particle model quad-rotor aircraft.
- For detailed operations and experimental results, see

3.CustExps\e2 NoPX4SIT LSwarm\1.NoPX4SITL30 Swarm\Readme En.pdf

- 6.2.2 100-machine point cluster experiment
- This experiment is based on the RflySim platform to realize the takeoff and circular flight of 100 particle model quad-rotor aircraft.
- For detailed operations and experimental results , see
 3.CustExps\e2 NoPX4SITL
 Swarm\2.NoPX4SITL100Sw
 arm\Readme_En.pdf

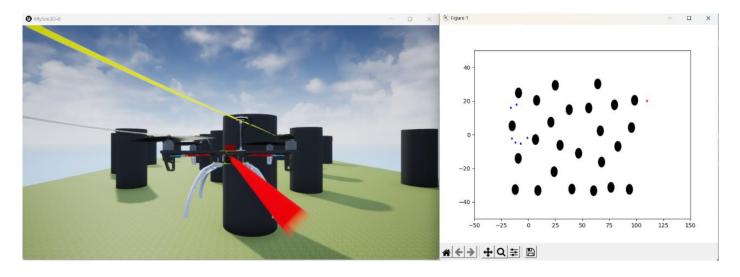
- 6.2.3 200-machine point cluster experiment
- This experiment is based on the RflySim platform to realize the takeoff and circular flight of a quadcopter with 200 particle models on two computers in a local area network.
- For detailed operations and experimental results, see

 SustExps/e2_NoPX4SITLS warm/3.NoPX4SITL200Swar
 m2PC\Readme_En.pdf



- 6.3.1 Ant algorithm multi-UAV path planning experiment
- A feasible and optimal path is planned through the ant algorithm. This path needs to meet the requirements of obstacle avoidance and collision avoidance.
- For detailed operations and experimental results, see

3.CustExps\e3 AISwarmCtr IExp\1.AntAlgorithmMutUA VPathPlan\Readme En.pdf



- 6.3.2 Olfati-Saber clustering algorithm
- The Olfati-Saber algorithm is used to achieve obstacle avoidance, collision avoidance, and clustering of multiple UAVs toward the target point.
- For detailed operations and experimental results, see

 3.CustExps\e3_AISwarmCtr
 IExp\2.Olfati_SaberSwarmU
 AVObsAvoid\Readme_En.pd
 f

- 6.3.3 UAV area defense
- Using deep reinforcement learning to train the drone defense model enables the use of fewer drones to defend against attacking drones and achieves good defensive results.
- For detailed operations and experimental results, see

 SustExps\e3 AISwarmCt rlExp\3.MultiUAVRegionDe fense\Readme_En.pdf

outline

- 1. Experimental platform configuration
- 2. Introduction to key interfaces
- 3. Basic experimental cases

(free version)

- 4. Advanced interface experiment (personal version)
- 5. Advanced case experiments

(collection version)

- 6. Extended case
 - (full version)
- 7. Summary

- This lecture mainly explains the cluster communication and cluster control of UAVs. It is divided into three parts: basic experiments, advanced experiments and extended cases. It can realize local area networking, UAV cluster communication and UAV formation control.
 - If you have any questions, please go to https://doc.rflysim.com/ for more information.

More tutorials on RflySim

Scan the QR code for consultation and communication

RflySim technical exchange group

Thanks!

